Extensions 1→N→G→Q→1 with N=C22×Dic9 and Q=C2

Direct product G=N×Q with N=C22×Dic9 and Q=C2
dρLabelID
C23×Dic9288C2^3xDic9288,365

Semidirect products G=N:Q with N=C22×Dic9 and Q=C2
extensionφ:Q→Out NdρLabelID
(C22×Dic9)⋊1C2 = Dic94D4φ: C2/C1C2 ⊆ Out C22×Dic9144(C2^2xDic9):1C2288,91
(C22×Dic9)⋊2C2 = C22.4D36φ: C2/C1C2 ⊆ Out C22×Dic9144(C2^2xDic9):2C2288,96
(C22×Dic9)⋊3C2 = C2×D18⋊C4φ: C2/C1C2 ⊆ Out C22×Dic9144(C2^2xDic9):3C2288,137
(C22×Dic9)⋊4C2 = D4×Dic9φ: C2/C1C2 ⊆ Out C22×Dic9144(C2^2xDic9):4C2288,144
(C22×Dic9)⋊5C2 = C23.23D18φ: C2/C1C2 ⊆ Out C22×Dic9144(C2^2xDic9):5C2288,145
(C22×Dic9)⋊6C2 = Dic9⋊D4φ: C2/C1C2 ⊆ Out C22×Dic9144(C2^2xDic9):6C2288,149
(C22×Dic9)⋊7C2 = C2×C18.D4φ: C2/C1C2 ⊆ Out C22×Dic9144(C2^2xDic9):7C2288,162
(C22×Dic9)⋊8C2 = C2×D42D9φ: C2/C1C2 ⊆ Out C22×Dic9144(C2^2xDic9):8C2288,357
(C22×Dic9)⋊9C2 = C22×C9⋊D4φ: C2/C1C2 ⊆ Out C22×Dic9144(C2^2xDic9):9C2288,366
(C22×Dic9)⋊10C2 = C22×C4×D9φ: trivial image144(C2^2xDic9):10C2288,353

Non-split extensions G=N.Q with N=C22×Dic9 and Q=C2
extensionφ:Q→Out NdρLabelID
(C22×Dic9).1C2 = C18.C42φ: C2/C1C2 ⊆ Out C22×Dic9288(C2^2xDic9).1C2288,38
(C22×Dic9).2C2 = C23.16D18φ: C2/C1C2 ⊆ Out C22×Dic9144(C2^2xDic9).2C2288,87
(C22×Dic9).3C2 = C222Dic18φ: C2/C1C2 ⊆ Out C22×Dic9144(C2^2xDic9).3C2288,88
(C22×Dic9).4C2 = C2×Dic9⋊C4φ: C2/C1C2 ⊆ Out C22×Dic9288(C2^2xDic9).4C2288,133
(C22×Dic9).5C2 = C2×C4⋊Dic9φ: C2/C1C2 ⊆ Out C22×Dic9288(C2^2xDic9).5C2288,135
(C22×Dic9).6C2 = C22×Dic18φ: C2/C1C2 ⊆ Out C22×Dic9288(C2^2xDic9).6C2288,352
(C22×Dic9).7C2 = C2×C4×Dic9φ: trivial image288(C2^2xDic9).7C2288,132

׿
×
𝔽